CONTEXT

The two curbless areas, though on opposite ends of Magnolia, possess remarkable similarities in conditions. They both include a significant change in grade as a result of ravines that eventually run into open water, Elliott Bay on the south end and Ballard Locks on the north end. The neighborhoods possess a certain informality that is expressed in the lack of curbs and sidewalks, limited access, and their proximity to natural areas. Despite their differences, sufficient similarities provide a scaffold for a set of common goals.

GOALS

• Enhance wildlife habitat where possible (esp. in/near Kiwanis Ravine, the largest heron rookery in the city);
• Preserve informal neighborhood character;
• Foster an awareness of natural systems;
• Encourage community interaction;
• Improve water quality through natural drainage;
• Mitigate the impact of major storm events;
• Use public art to inspire interest and play.

park • beach • ravine • informal • secluded • lush • quiet • cool
CONTEXT - NORTH END

Kiwanis Ravine

sites for intervention

Gilman Ave W

32nd Ave W
The portion of Magnolia to the north of the main project corridor, 34th Avenue West, has Kiwanis Ravine as its most defining feature. Kiwanis Ravine offers little physical access due to steep slopes, but serves as home to the city’s largest heron rookery. It also contains Wolfe Creek, which is currently diverted into a storm drain to West Point Treatment Facility, but may someday be connected to the Ship Canal to provide additional habitat for migrating salmon.

The area surrounding Kiwanis Ravine is made up of a neighborhood of single-family homes that feels somewhat suburban in character. Multiple dead ends abutting the ravine, limited and slow car traffic, coupled with the lack of sidewalks and curbs characterize this area as informal and alley-like. The roads in this neighborhood crown and drain into gravel parking strips where infiltration is relatively slow, a condition that is exacerbated by lack of storm drains--there is only one at the very north end where Gay and 32nd meet and the pedestrian/bike trail heads to the Ballard Locks.
Natural areas and parks, while making our cities livable, cut streets off resulting in dead ends. These places often become dead zones prone to dumping, parking and informal yard waste composting. To improve these conditions and promote awareness of natural areas, converting the dead ends to Live Ends celebrates the positive aspects of these sites and also treats the existing problems.

The Live End is a simple intervention that could be taken on by a small group of neighbors. A small path leading from the street into the Live End terminates at the ravine or park’s edge where an art piece allows visitors to listen more closely to what is happening in the park, and composting fences provide a necessary amenity for neighborhoods.

Two trees with a loose fence and low grasses punctuate the transition from the street to the Live End where benches provide a resting place for visitors.

The following page has a list of ingredients for the Live End. They are mostly plants and used items that can be found at salvage stores. The Live End is open to interpretation and may vary depending on the neighborhood’s existing conditions and the ideas produced by those involved.

The map of Seattle (below) shows all the locations in Seattle that have steep slopes and all of Seattle’s open spaces/parks (places that often result in dead ends) to give you an idea of locations where this design might be appropriate.
Curbless

Design Proposal

Composting fence built with salvaged 2 x 4s, chain link or chicken wire and precast concrete footing allows residents to deposit limbs into the top. As they settle, they decompose providing mulch to feed the ravine and retain water.

Prototype

Ingredients:
- plants
- wood chips
- salvaged wood
- chain link
- deck screws/bolts
- concrete footings (for composting fence)
- recycled concrete
- two trees
- 1 or 2 benches
- gravel

The above drawings are ideas for different ways to configure the Live End. They include two benches each, two to four compost fences, two trees, and a small boardwalk. The ingredients list above may give you some idea of what you’ll need to collect to make it. Most of the necessary items can be found at salvage stores or by asking neighbors what they’ve got in their yards.

The Heron Snooper is a simple cone made of scrap metal that, when positioned toward the ravine, amplifies any noises emanated by birds, animals, leaves, water, etc... bringing visitors closer to the activities that occur within.

The Heron Snooper is meant to **heighten the visitor's awareness of their surroundings** by focusing on a particular set of sounds. In this case, it is the café below the central staircase in Gould Hall at the University of Washington.

Street end enhanced with trees, small path, passive composting fences and public art.

Loose fence structure to mark street end, create a barrier for cars, and use for hanging signs.

LIVE END

Approx. 15' x 35'

2' wide
PROTOTYPE USES

This prototype could potentially be used in a wide variety of settings – for the most part, the only requirements are that a potential site has no curb and that water flows into, or could be directed into the site.

HOW IT WORKS

Water enters the site where it is cleaned by vegetation and infiltrated into the soil (which is aided by having about one foot of amended soil). In very large storm events, water that overflows the site behaves as it would have in the absence of a raingarden.

BENEFITS

The benefits of this prototype potentially include: improved water quality; improved regulation of water quantity; and creation of habitat with native vegetation.
How it works

Stormwater from an existing catch basin is diverted to the structure. Water enters the first cell, where it is cleaned by vegetation and infiltrated into the soil (which is assisted by two feet of amended soil). When the infiltration rate of the soil in the first cell is exceeded, water cascades into the second cell via a cut in the divider that is six-inches below the top of the structure. This overflow process continues on into additional cells as needed. In big storm events all the cells would be full and cascading, making the structure look like the fish ladder at the Ballard Locks – from which the structure gets its name.

Prototype sections

Prototype plan view

Prototype uses

This prototype, strictly speaking, is not really a prototype as it was designed with the characteristics of a very unique location in mind. However, the prototype does serve to illustrate how stormwater structures might be designed to become community landmarks.

Benefits

The benefits of this prototype potentially include: improved water quality, improved regulation of stormwater quantity, an enhanced pedestrian corridor, environmental education, and community pride.

Prototype uses benefits

- improved water quality
- improved regulation of stormwater quantity
- enhanced pedestrian corridor
- environmental education
- community pride

Prototype sections

Prototype plan view
Wolfe Creek is diverted into a storm drain before exiting to Puget Sound, while other surface water is sent in a combined sewer to West Point for treatment. The combined system periodically overflows, and Metro is exploring options for redirecting the combined sewer overflows. Before Wolfe Creek was piped, salmon most likely spawned in its waters.
In the first phase, people are welcome to use all kinds of material to make blue fish, which show the path the creek took and symbolize the salmon that were there. Also, in order to attract people to the beach, a temporary “water tree” landmark is down the street on the beach.
When it rains, the drops will run around the fish, and in this way, the fish will look like they are going against the current.

In the second phase, the stormwater will be collected in several rain gardens. The rain gardens will clean the water, slow it down and contribute to the ground water flow.
In the third phase, Wolfe Creek will be daylighted out of the storm drain. In this way, the water can be cleaned and infiltrated into the land; therefore, there will be better habitat for the ecological community by having higher quality water. Moreover, people will use the Wolfe Creek Beach again, so there will be closer interaction between the land and community of Magnolia.

Through a fairly minor regrading of the channel, there lies an opportunity to daylight Wolfe Creek. If the substantial flows that are the old creek are part of the combined sewer system, then bringing this water to the surface and out of the drains could substantially relieve the combined sewer overflows, as well as provide an amenity to reduce stormwater impacts on the City's system.